

 Navigation

 	
 index

 	
 next |

 	dynrules 0.1.0 documentation

Welcome to the dynrules documentation!

dynrules is a dynamic ruleset scripting package for Python. It uses the
Dynamic Scripting technique to create adaptive AI scripts automatically
from predefined rulesets.

Contents:

	Introduction
	Prerequisites

	Installing dynrules

	Binary packages

	Notes on Mercurial usage

	Getting started
	Creating rules - Rule

	Weighting rules - RuleSet

	Generating scripts - LearnSystem

	Python API reference

	C++ Implementation
	Installation

	Usage

Further readings:

	Release News

	Todo list for dynrules

	License

Indices and tables

	Index

	Search Page

Documentation TODOs

Last generated on: May 22, 2013

 Copyright Public Domain 2008-2013.
 Last updated on May 22, 2013.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	dynrules 0.1.0 documentation

Introduction

This is the documentation for the dynrules dynamic rules creation
package. dynrules is a small package that allows you to create
rule-based scripts for adaptive AI systems automatically. It uses the
Dynamic Scripting technique and algorithms as described by Pieter Spronck [http://ticc.uvt.nl/~pspronck/] in his paper Adaptive Game AI
with Dynamic Scripting.

The focus of the package is on weighted ruleset management and script
generation, rather than weight adjustments and fitness evaluation. There
is only limited support for that kind of functionality and most of it
has to be implemented by the specific user code.

dynrules is not meant to be a fully functional AI package, but rather a
supportive system for creating your own adaptive AI quickly.

Prerequisites

You must have at least one of the following Python versions installed:

	Python 2.6+ (http://www.python.org)

	PyPy 1.8.0+ (http://www.pypy.org)

	IronPython 2.7.2.1+ (http://www.ironpython.net)

Installing dynrules

You can either use the python way of installing the package using
distutils or the make command using the Makefile. Simply type

$ python setup.py install

for the traditional python way or

$ make install

for using the Makefile.

It must be said that the install target of the Makefile does not do
anything different from the python way. It simply calls ‘python setup.py
install’.

Trying out

You also can test out dynrules without actually installing it. You just
need to set up your PYTHONPATH to point to the location of the
source distribution package. On Windows-based platforms, you might use
something like

set PYTHONPATH=C:\path\to\dynrules\:$PYTHONPATH

to define the PYTHONPATH on a command shell. On Linux/Unix, use

export PYTHONPATH=/path/to/dynrules:$PYTHONPATH

for bourne shell compatibles or

setenv PYTHONPATH /path/to/dynrules:$PYTHONPATH

for C shell compatibles. You can omit the :$PYTHONPATH`, if you did not use
it so far and if your environment settings do not define it.

Note

If you are using IronPython, use IRONPYTHONPATH instead of
PYTHONPATH.

Binary packages

dynrules is not provided as binary package by the author. It might be
that someone else set up such a package for your wanted operating system
or distribution. Those packages are usually not supported by the author,
which means that installation problems or similar issues, which do not
target dynrules directly, should be escalated to the respective supplier
of that package.

Notes on Mercurial usage

The Mercurial repository version of dynrules is not intended to be used
in a production environment. Interfaces may change from one checkin to
another, methods, classes or modules can be broken and so on. If you
want more reliable code, please refer to the official releases.

 Copyright Public Domain 2008-2013.
 Last updated on May 22, 2013.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	dynrules 0.1.0 documentation

Getting started

dynrules uses a simple, but flexible class layout to configure rulesets
and create scripts from them. In order to use the dynrules package,
simply import it using

import dynrules

You now can start to create own rulesets and set up your script
generator.

Creating rules - Rule

A rule defines certain criteria of an object’s behaviour. The Rule
class features the most basic needs to set up your own rules for
scripts. It consists of an id, a weight and code that defines the
rule’s action.

Let’s imagine, you have a game with a Warrior class that can walk in four
directions and fight against enemies. Defining those actions might look
like

class Warrior:
 def do_walk (self, direction):
 ...
 def fight (self, enemy):
 ...
 ...

Automating walking and fighting requires a lot of work regarding the
priorities of when to walk and when to fight. Fighting a stronger enemy
might be senseless, so the Warrior should walk away from it. Let’s try
to formulate some rules for it:

if is_enemy_at (direction):
 if warrior.strength > enemy.strength:
 warrior.fight (enemy)
 else:
 warrior.do_walk (~direction)
else:
 warrior.do_walk (direction)

What does the above code do? First it checks, whether there is an enemy
at the specified direction the warrior should walk to. If it is, and it is
weaker than the warrior, the warrior will fight it. Otherwise, the warrior
will go into the opposite direction to escape a possible fight. At last, if
no enemy is found at the given direction, the warrior will walk towards it.

This is a predictable, typical behaviour and sometimes it might happen
that, although the warrior is weaker, it will fight the enemy with
success. That means, for a more unpredictable behaviour, we have four
possible actions:

	warrior.strength > enemy.strength: fight enemy

	warrior.strength < enemy.strength: flee from enemy

	warrior.strength < enemy.strength: fight enemy

	warrior.strength > enemy.strength: flee from enemy

The first and second rule are directly from the solution above. They
make the most sense in those cases and should be preferred. Rule three
and four shall offer some more unpredictable behaviour.

Let’s formulate some rules for the enemy detection scenario using
dynrules.

Create a new Rule for fighting the enemy.
rule1 = Rule (1)
rule1.weight = 10
rule1.code = "if warrior.strength > enemy.strength: warrior.fight (enemy)"

Create another Rule for fleeing.
rule2 = Rule (2)
rule2.weight = 10
rule2.code = "if warrior.strength < enemy.strength: warrior.do_walk (~direction)"

Fighting a stronger enemy
rule3 = Rule (3)
rule3.weight = 5
rule3.code = "if warrior.strength < enemy.strength: warrior.fight (enemy)"

Fleeing from a weaker enemy
rule4 = Rule (4)
rule4.weight = 5
rule4.code = "if warrior.strength > enemy.strength: warrior.do_walk (~direction)"

We set up the necessary rules. Now it’s time to put them together in a
RuleSet that takes care of them.

Weighting rules - RuleSet

Weighting a rule means to mark and measure its priority or importance
within a set of applicable rules. The more important a rule is, the
higher its weight should be. Measuring the importance of a rule is
usually done by counting how often it is called. The result (successful
or unsuccessful) often influences the rule’s weight, but does not need
to.

The RuleSet takes care of mesuring the importance and updating the
weight of the Rule objects it contains. A RuleSet usually
consists of applicable rules for a specific situation and lets you
define methods for measuring and detecting the success of the rules. As
the process of measuring the success solely depends on the surrounding
system, the implemenation of that process can vary and the RuleSet
class requires you to take care of it.

class MyOwnRuleSet (RuleSet):
 def calculate_adjustment (self, fitness):
 # Implement your own success detection here.
 pass

 def distribute_remainder (self, remainder):
 # Implement your own remainder method here.
 pass

calculate_adjustment(self, fitness) calculates the reward or
penalty, each used rule receives. The fitness argument can be used to
provide additional information, e.g. about the performance of the
execution.

distribute_remainder (self, remainder) is called to distribute the
difference between the total weight before and after the update once the
weight updating within the RuleSet is done. This might be necessary to
allow a balancing of rule weights so that the total sum of all rules within a
RuleSet will remain the same, for example. In reality however, such a
distribution solely depends on the specific application needs.

The weight update process of the RuleSet looks like

def update_weights (self, fitness):
 # Initialise needed things.
 adjustment = self.calculate_adjustment (fitness)
 # Update rule weights with the adjustment and calculuate remainder
 self.distribute_remainder (remander)
 # Update new total weight.
 # return

To get a better idea about this, let’s create a small RuleSet
implementation for our previously created rules. We assume that the
fitness we receive expresses the difference between the damage the
warrior made and received during the execution of the rules.

class WarriorRuleSet (RuleSet):
 def calculate_adjustment (self, fitness):
 #
 # fitness = damage_warrior_caused - damage_warrior_received
 #
 # 1) a high fitness means, the warrior caused more damage
 # 2) a very low or negative fitness means, the warrior did not
 # cause that much damage or even received more than it caused.
 #
 # for case 1) we assume the execution of the rules to be
 # successful, for case 2) we do not.

 # We set the sucess/fail threshold to 3.
 if fitness > 3:
 # The execution was successful, the warrior is strong!
 # The adjustment will be the total fitness - threshold.
 return fitness - 3
 else:
 # The execution was not successful, the warrior is weak!
 if fitness < 0:
 # Lousy, simply return the negative fitness
 return fitness
 else:
 # Not so lousy, return a penalty value as difference
 # of threshold minus fitness.
 return - (3 - fitness)

 def distribute_remainder (self, remainder):
 #
 # Here we distribute the difference of the last total weights
 # and newly calculated total weights.
 # Give each rule the same fraction.
 #
 count = len (self.rules)
 if count == 0:
 return # Safety net, if no rules are there.

 fraction = remainder / float (count)
 for rule in self.rules:
 rule.weight += fraction

Now we can add the created rules from above.

warriorruleset = WarriorRuleSet (0, 20)
warriorruleset.add (rule1)
warriorruleset.add (rule2)
warriorruleset.add (rule3)
warriorruleset.add (rule4)

The both arguments of the constructor, minweight and maxweight are
the boundary limits for rules contained in a RuleSet. They define
the upper and lower weight limit, each rule can have.

From now on, the WarriorRuleSet is fully functional and can update
rule weights as necessary.

To add another level of automation and to create scripts from the rules, a
LearnSystem will be necessary however.

Generating scripts - LearnSystem

The LearnSystem class is used to create scripts automatically from
an existing RuleSet. It generates the scripts in a programming
language neutral manner which means, that it only uses the code
attribute of Rule objects for creating the output.

Additionally the LearnSystem can add code to be executed before and
after the rules are entered to make the generated script fully
functional for the specific task and environment. The creation of a
script thus consists of the following tasks.

	Create script header

	Select rules and create code

	Create script footer

To create a LearnSystem for the WarriorRuleSet, only a single
line of code is necessary.

warriorlearnsystem = LearnSystem (warriorruleset)

The LearnSystem is now full functional and you can start generating
scripts for the warrior.

warriorlearnsystem.create_script ("scriptfile.scr", 4)

create_script will create a new script, insert a header, add rules
to it and then add the footer. You can specify the maximum amount of
rules to be added by setting the second argument to the required value.

Add a maximum of 10 rules.
warriorlearnsystem.create_script ("scriptfile.scr", 10)
Add a maximum of 3 rules.
warriorlearnsystem.create_script ("scriptfile2.scr", 3)

You can modify several attributes and methods of the LearnSystem to
tweak it to your personal needs.

create_header() and create_footer() are used to create necesary
code to add before and after the rules. That can be initialisation and
finalisation code, checks or whatever is necessary for the target
system. Both methods return a string containing the code to add.

class OwnLearnSystem (LearnSystem):
 def create_header (self):
 # Create header code
 return 'def execute_rules (object):\n' + \
 ' selected_rule = None\n'

 def create_footer (self):
 # Create footer code
 return ' return selected_rule\n'

The above class would generate the following code:

def execute_rules (object):
 selected_rule = None
 #
 # RULE CODE
 #
 return selected_rule

The maxscriptsize attribute allows you to define the maximum size in
bytes of a script to generate. maxscriptsize does not take the header
and footer into account, but only the code generated from the rules.

Limit the size of the code generated from the rules to 4 kB.
warriorlearnsystem.maxscriptsize = 4096

maxtries limits the rule selection process, so that it does not take
infinite trials to find a rule to add. This can be very helpful to
limit the time spent on selecting rules.

Only try to find new rules 50 times.
warriorlearnsystem.maxtries = 50

That’s it. We now have a basic dynamic scripting system that can select
rules, create scripts and update the rule weights upon execution of the
scripts. Now it is time to integrate all of it into the AI logic code!

 Copyright Public Domain 2008-2013.
 Last updated on May 22, 2013.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	dynrules 0.1.0 documentation

Python API reference

	
class Rule(id : object)

	Creates a new Rule object with the given id.

Rule is a simple class type that carries a weight indicator
and arbitrary code data for usage in the dynamic script generation
process.

	
code

	Gets or sets the code of the Rule.

	
id

	Gets the id of the Rule.

	
used

	Indicates whether the Rule was used or not.

	
weight

	Gets or sets the weight of the Rule.

	
class RuleSet(minweight : float, maxweight : float)

	Creates a new, empty RuleSet.

RuleSet is a rule container class that manages rules, their
weights and the weight distribution for the rules. The minweight and
maxweight parameters are the minimum and maximum weight boundaries,
each rule’s weight has to stay in.

	
maxweight

	Gets or sets the maximum weight to use for rules.

	
minweight

	Gets or sets the minimum weight to use for rules.

	
rules

	Gets the list of currently managed Rule objects.

	
weight

	Gets the total weight of all managed Rule objects.

	
add(rule : Rule)

	Adds a Rule to the RuleSet.

	
calculate_adjustment(fitness : float) float

	Calculates the reward or penalty, each of the activated rules recives.
fitness hereby can be used as measure of the performance or whatever
is suitable in the implementation.

This must be implemented by inheriting classes.

	
clear()

	Removes all rules from the RuleSet.

	
distribute_remainder(remainder : float) float

	Distributes the remainder of the weight differences between the
last weights and current weights.

The method must return a value.
This must be implemented by inheriting classes.

	
find(rid : float) Rule

	Tries to find the Rule with the matching id and returns it.
In case no Rule with the passed id exists, None is returned.

	
remove(rule : Rule)

	Removes a Rule from the RuleSet.

	
update_weights(fitness : float)

	Updates the weights of all contained rules.

Adapted from Pieter Spronck’s algorithm as explained in
Spronck et al: 2005, ‘Adaptive Game AI with Dynamic Scripting’.

	
class RuleManager(id : object)

	The RuleManager class takes care of loading and saving
rules from arbitrary data sources.
The base is an abstract class, which’s load_rules() method must be
implemented according to the specific needs of the application.

	
maxrules

	Gets the maximum amount of rules to manage.

	
load_rules([maxrules=-1]) [Rule, Rule ...]

	Loads rules from the underlying data source and returns them as list.
The maxrules argument defines the amount of rules to load. If it is
smaller than 0, all existing rules should be returned.

This must be implemented by inheriting classes.

	
save_rules(rules : iterable)

	Saves the passed rules to the underlying data source.

This must be implemented by inheriting classes.

	
save_rules_hint_file(filename : string, learnsystem : LearnSystem)

	Saves a LearnSystem/RuleSet combination to a physical
file.

	
class MMapRuleManager(maxrules : int)

	A simple memory-mapped RuleManager implementation that
does not load its rules from an external data source.

It is an extremely useful class for testing rules and basic algorithms, but
due to the in-memory management of all rules, it should not be used in a
productive environment, especially if large rule sets have to be managed.

By default, the MMapRuleManager class will reserve enough memory
for the rules to manage, when it is constructed. It will not fill the
rules with useful values though. It is up to caller to use
load_rules() afterwards and fill the returned Rule
instances with the necessary data.

	
maxrules

	Gets the maximum amount of rules to manage.

	
load_rules([maxrules=-1]) [Rule, Rule ...]

	Returns the internally managed rules or a certain subset.

	
save_rules(rules : iterable)

	This does nothing and will always return True.

	
save_rules_hint_file(filename : string, learnsystem : LearnSystem)

	Saves a LearnSystem/RuleSet combination to a physical
file.

	
class LearnSystem(ruleset : RuleSet)

	Creates a new LearnSystem using a specific RuleSet.

The LearnSystem class takes care of creating new scripts
based on a predefined RuleSet. It does not evaluate the
scripts nor modifies the rules written to them.

The procedure of creating scripts is done using three phases:

	header creation

	rule code creation

	footer creation

The header and footer are freely choosable. You can simple override
or reassign the create_header() and create_footer() methods
to let them return your required code.

	
maxscriptsize

	Gets or sets the maximum script size (in bytes) for inserting rules.

	
maxtries

	Gets or sets the maximum amount of tries to insert a script rule.

	
ruleset

	Gets or sets the RuleSet to use.

	
create_footer() str

	Creates the footer for the script file.

The default implementation does nothing.

	
create_header() str

	Creates the header for the script file.

The default implementation does nothing.

	
create_rules(maxrules : int) str

	Creates a rule list from the currently active RuleSet.
Gets maxrules rules from the set RuleSet and passes
their code back as string for the script file.

Adapted from Pieter Spronck’s algorithm as explained in
Spronck et al: 2005, ‘Adaptive Game AI with Dynamic Scripting’.

	
create_script(scriptfile : object, maxrules : int)

	Creates a script from the available RuleSet using the
passed script file. A maximum of maxrules rules will be written.
scriptfile can be either a file object or filename. In case of
a file object it is assumed to be writeable and won’t be closed on
leaving the function (but flushed).

 Copyright Public Domain 2008-2013.
 Last updated on May 22, 2013.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	dynrules 0.1.0 documentation

C++ Implementation

The C++ implementation of dynrules features a set of classes similar to
the Python implementation and can be found in the cplusplus/
subdirectory of the distribution.

Installation

The C++ implementation ships with an own set of build instructions that
are completely independent from Python. To build (and install) it, you
can use the make tool on Unix-like platforms

$ make && make install

and the Visual Studio.NET solution file under win32/ on Windows
platforms.

Usage

For conrete details about the API, please take a look at either the
header file comments or the API documentation in cplusplus/doc/html.

 Copyright Public Domain 2008-2013.
 Last updated on May 22, 2013.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	dynrules 0.1.0 documentation

Release News

This describes the latest changes between the dynrules releases.

0.1.0

Released on 2013-05-22

	Python framework:

	
	Removed Python C module.

	Renamed RuleManagement class to RuleManager.

	Renamed MMapRuleManagement class to MMapRuleManager.

	C++ framework:

	
	Renamed RuleManagement class to RuleManager.

	Renamed MMapRuleManagement class to MMapRuleManager.

0.0.15

Released on 2012-09-30

	Python framework:

	
	Added PyPy support.

	More compatibility fixes for Python 3.x.

	Fixed a refcount issue in CRuleSet.update_weights(), which might
lead to crashes.

	Moved unit tests into dynrules package.

0.0.14

Released on 2011-05-14

	Python framework:

	
	Compatibility fixes for Python 3.2.

0.0.13

Released on 2010-05-19

	Python framework:

	
	Fixed constructor for RuleManagement class.

0.0.12

Released on 2010-03-26

	Python framework:

	
	Fixed file recognition issue for Python 3.x in CLearnSystem.

0.0.11

Released on 2009-12-25

	Fixed documentation distribution.

0.0.10

Released on 2009-12-24

	Python framework:

	
	Changed CRule.id to be an arbitrary object.

	Fixed minweight/maxweight range checks for CRuleSet.

	Fixed minweight/maxweight checks within the C API interfaces.

0.0.9

Released on 2009-12-22

	C++ framework:

	
	Changed RuleManagement.save_rules_hint_file() to take a filename instead
of prefix and suffix.

	Better Makefile support

	Fixed several pointer/const/reference issues.

	Changed char* exceptions to be invalid_argument types.

	Added HTML API reference.

	Added Win32 VC++ (VS.NET 2008) support.

	Python framework:

	
	Changed RuleManagement.save_rules_hint_file() to take a filename instead
of prefix and suffix.

	Added C API documentation.

	Added C API tests.

	import cleanups.

0.0.8

Released on 2009-07-03

	Python framework:

	
	Fixed an import bug in LearnSystem.

0.0.7

Released on 2009-03-09

	C++ framework:

	
	Added missing RuleManagement::getMaxRules() method.

	Fixed documentation comments.

	RuleSet::updateWeights() method receives only a fitness argument now.

	Python framework:

	
	Many fixes for correct Python 3.x support.

	CLearnSystem.create_script() now can handle file names properly.

	Added API reference to documentations.

0.0.6

Released on 2008-12-16

	Python framework:

	
	Added Python 3.x support.
Note that CLearnSystem.create_script() does not accept file names with
Python 3.0, only file objects.

0.0.5

Released on 2008-11-21

	C++ framework:

	
	Fixed a bug in RuleSet::updateWeights() which caused wrong weight
results.

	Added missing MMapRuleManagement.h include to dynrules.h

	Python framework:

	
	Fixed name ambiguity for the Python and C implementation.
The visible C types in the dynrules packages were renamed to
CRule, CRuleSet and CLearnSystem, the C module types still have their
original name.

	Fixed C API slots.

	Added RuleSet.find() and CRuleSet.find() methods.

	New RuleManagement class.

	New MMapRuleManagement class for in-memory rule management.

0.0.4

Released on 2008-11-20

	C++ framework:

	
	New RuleSet.find() method.

	New abstract RuleManagement class for managing rules.

	New MMapRuleManagement class for in-memory rule management.

	Changed API to pass object pointers around instead of objects.

0.0.3

Released on 2008-11-09

	C++ framework:

	
	Added documentation.

	Fixed a minor range issue in the RuleSet constructor that allowed
minweight to be smaller than maxweight.

	Fixed an int vs. double bug in the LearnSystem constructor.

0.0.2

Released on 2008-11-08

	New pure C++ framework under cplusplus

0.0.1

Released on 2008-10-06

	Initial release.

 Copyright Public Domain 2008-2013.
 Last updated on May 22, 2013.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	dynrules 0.1.0 documentation

Todo list for dynrules

	complete unittests

	add more examples

 Copyright Public Domain 2008-2013.
 Last updated on May 22, 2013.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 previous |

 	dynrules 0.1.0 documentation

License

This software is distributed under the Public Domain.

In cases, where the law prohibits the recognition of Public Domain
software, this software can be licensed under the zlib lincese as
stated below:

Copyright (C) 2008-2013 Marcus von Appen <marcus@sysfault.org>

This software is provided 'as-is', without any express or implied
warranty. In no event will the authors be held liable for any damages
arising from the use of this software.

Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it
freely, subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must not
 claim that you wrote the original software. If you use this software
 in a product, an acknowledgment in the product documentation would be
 appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be
 misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.

 Copyright Public Domain 2008-2013.
 Last updated on May 22, 2013.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	dynrules 0.1.0 documentation

Index

 A
 | C
 | D
 | F
 | I
 | L
 | M
 | R
 | S
 | U
 | W

A

 	

 	add() (RuleSet method)

C

 	

 	calculate_adjustment() (RuleSet method)

 	clear() (RuleSet method)

 	code (Rule attribute)

 	create_footer() (LearnSystem method)

 	

 	create_header() (LearnSystem method)

 	create_rules() (LearnSystem method)

 	create_script() (LearnSystem method)

D

 	

 	distribute_remainder() (RuleSet method)

F

 	

 	find() (RuleSet method)

I

 	

 	id (Rule attribute)

L

 	

 	LearnSystem (built-in class)

 	

 	load_rules() (MMapRuleManager method)

 	

 	(RuleManager method)

M

 	

 	maxrules (MMapRuleManager attribute)

 	

 	(RuleManager attribute)

 	maxscriptsize (LearnSystem attribute)

 	maxtries (LearnSystem attribute)

 	

 	maxweight (RuleSet attribute)

 	minweight (RuleSet attribute)

 	MMapRuleManager (built-in class)

R

 	

 	remove() (RuleSet method)

 	Rule (built-in class)

 	RuleManager (built-in class)

 	

 	rules (RuleSet attribute)

 	RuleSet (built-in class)

 	ruleset (LearnSystem attribute)

S

 	

 	save_rules() (MMapRuleManager method)

 	

 	(RuleManager method)

 	

 	save_rules_hint_file() (MMapRuleManager method)

 	

 	(RuleManager method)

U

 	

 	update_weights() (RuleSet method)

 	

 	used (Rule attribute)

W

 	

 	weight (Rule attribute)

 	

 	(RuleSet attribute)

 Copyright Public Domain 2008-2013.
 Last updated on May 22, 2013.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 _static/minus.png

_static/comment-bright.png

search.html

 Navigation

 		
 index

 		dynrules 0.1.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright Public Domain 2008-2013.
 Last updated on May 22, 2013.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 		latest

_static/comment-close.png

_static/up-pressed.png

_static/up.png

_static/down.png

_static/plus.png

_static/comment.png

_static/ajax-loader.gif

_static/file.png

_static/down-pressed.png

